
Supplementary Figures and Legends:

Supplementary figure 1. Projection onto each jPCA axis as a function of time. Data is shown for monkey J3. The
plot of the jPCA plane uses the same format as in figure 3 of the main text. The plots versus time use the same
format as for the individual-neuron PSTHs in figure 2 of the main text (though here the vertical units are arbitrary).
Traces are colored red to green based on the level of preparatory activity for that projection. This allows
visualization of ‘tuning’ with respect to the reach trajectories (inset). Direction ‘tuning’ is present but imperfect in
the projections, much as it is for the neurons upon which the projections are based.

Indeed, in many ways the projections versus time look as if they could be the responses of single neurons. This
is not accidental: the jPCA projections capture responses that are strongly present in the responses of individual
neurons. Conversely, the jPCA projections are simply weighted sums of individual-neuron responses. Each jPCA
projection can thus be interpreted much as with a traditional ‘population average’. The key difference is that the
weights used for jPCA are chosen by the algorithm, rather than set by hand according to the ‘preferred direction’.

As with the supplementary movies and other plots that show an extended period of time, these projections were
based on the top ten PCs rather than the top six. This is not critical but aids in finding a projection that works well
across a wide range of times.

projections versus each other
(250 ms of data)

jPC1 projection versus time
(all times)

target move onset 200 ms

jPC2 projection versus time
(all times)

target move onset 200 ms

Supplementary figure 2. Construction of
shuffle controls, illustrated for an example
neuron. A potential concern is that the jPCA
method might be powerful enough to find
state-space rotations for any population
response that contains diverse and multiphasic
responses. This would be a large concern were
one analyzing a few conditions in a very high-
dimensional space. However, our analyses
involved 27-108 conditions, and were applied
only after the data dimensionality was reduced
using traditional PCA. Nevertheless, it is
prudent to empirically evaluate the degree to
which rotational patterns might be found by
chance simply because responses are diverse
and complex.

To evaluate this possibility we performed
three shuffle controls that preserve response
diversity and complexity, but disrupt the deep
structure of the data. If robust rotational
structure can be seen in the shuffled controls,
then this would be a cause for serious concern.
It would indicate that rotations can be found by
our methods even when not truly present.

All shuffle controls are based on the
distinction between preparatory activity (which is left intact) and peri-movement activity (which was shuffled in
three different ways). We picked a time-point 50 ms after the go cue as the dividing point between preparatory and
peri-movement activity. For the first shuffled control, the pattern of peri-movement activity was inverted for half of
the conditions, selected at random. The inversion was performed around the dividing time-point, such that
continuity with preparatory activity was preserved. This procedure was performed separately for each neuron.

The second shuffle control was similar to the first, but inverted the peri-movement activity pattern for all
conditions. This manipulation is not expected to remove all rotational structure (most such structure is merely sign-
inverted). However, this manipulation is expected to largely remove any consistent relationship (assuming there is
one) between the preparatory state and the phase of subsequent oscillations. Thus, for the time period of interest,
this shuffle control is expected to greatly reduce the consistency of any true rotations, especially the relationship
between phase and initial state.

The third shuffle control randomly reassigned the peri-movement activity from one condition to the preparatory
activity from another. The beginning of the peri-movement pattern was simply appended to the final firing rate
during the preparatory state, such that there was no discontinuity The same reassignment was performed for all
neurons. As with the second control, this third shuffle control is not expected to remove all rotational structure
(many of the peri-movement activity patterns are altered only modestly by this manipulation). However, any true
relationship between rotation phase and initial state is expected to be disrupted. Thus, for the time period of interest,
this shuffle control is expected to greatly reduce the consistency of any true rotations, especially the relationship
between phase and initial state.

For each control, if strong rotational structure survives the shuffle procedure, then that will be taken as evidence
that the jPCA method can erroneously extract such structure even when it is absent or weakly present. This would
make the central results in figure 3 impossible to interpret. If strong rotational structure is lost following the shuffle,
then that will be taken as evidence that such structure was in fact present in the original data to a much greater
degree than expected by chance.

target move onsettarget move onset

Original data
Shuffle #1

Movement activity inverted
for 50% of conditions

target move onset

Shuffle #2
Movement activity inverted

for all conditions

target move onset

Shuffle #3
Movement activity assigned

to new conditions

monkey J
neuron #117

Supplementary figure 3. Effect of the shuffle controls illustrated in supplementary figure 2. Each panel plots the
jPCA projection of the population response for the J-array dataset (108 reach conditions). The top-left panel plots
the projection for the original, un-shuffled data (same as figure 3e of the main text). The other panels plot the
projections when jPCA was applied following the three shuffle controls. While many individual trajectories remain
curved, the overall robustness of the rotational structure, and the relationship between phase and initial state, is
largely lost following shuffling. This indicates that the pattern seen in the top-left panel reflects real underlying
structure in the population response, rather that the ability of our method to find such structure by chance. Shuffle
controls had similar effects across all datasets.

pr
oj

ec
tio

n
on

to
 jP

C
2 (a

.u
.)

projection onto jPC1 (a.u.)

pr
oj

ec
tio

n
on

to
 jP

C
2 (a

.u
.)

projection onto jPC1 (a.u.)

Original data Shuffle #1
Movement activity inverted

for 50% of conditions

Shuffle #2
Movement activity inverted

for all conditions

Shuffle #3
Movement activity assigned

to new conditions

Supplementary figure 4. The data contain multiple planes with rotations. Data are shown for two datasets (monkey
B and monkey J-array). Very similar findings were obtained for all datasets. Each column plots the first three jPCA
planes (the top six jPCs) found within the top 10 PCs. All three planes contained rotational structure that was
coherent (in the same direction and at a similar angular velocity) across conditions. However, rotations were slower
(as expected) and less orderly for the higher-numbered jPCA planes. The top three jPCA planes (spanning six
dimensions) captured 60% (monkey B) and 54% (monkey J-array) of the total variance in the data. For comparison,
the top six PCs (which by definition capture the most variance possible) captured 72% and 64% of the variance.
These findings were typical: all datasets contained two, and usually three, planes that captured rotations. Together
these planes captured 50-70% of the data variance (range is across datasets). The planes shown were found by
applying jPCA to the top 10 PCs, rather than the top 6 as in the main text. This is necessary; it is unlikely that the
six dimensions with the strongest rotations would fortuitously align with the top 6 PCs.

projection onto jPC1 (a.u.)

pr
oj

ec
tio

n
on

to
 jP

C
2 (a

.u
.)

jPCA plane 1
22% of variance

projection onto jPC3 (a.u.)

pr
oj

ec
tio

n
on

to
 jP

C
4 (a

.u
.)

jPCA plane 2
20% of variance

projection onto jPC5 (a.u.)

pr
oj

ec
tio

n
on

to
 jP

C
6 (a

.u
.)

jPCA plane 3
18% of variance

projection onto jPC1 (a.u.)

pr
oj

ec
tio

n
on

to
 jP

C
2 (a

.u
.)

jPCA plane 1
22% of variance

projection onto jPC3 (a.u.)

pr
oj

ec
tio

n
on

to
 jP

C
4 (a

.u
.)

jPCA plane 2
19% of variance

projection onto jPC5 (a.u.)

pr
oj

ec
tio

n
on

to
 jP

C
6 (a

.u
.)

jPCA plane 3
12% of variance

monkey B
(60% of total variance)

monkey J-array
(54% of total variance)

Supplementary figure 5.
Analysis segregated by area
(caudal PMd versus M1).
Analysis employed data from
two monkeys, each implanted
with a pair of electrode arrays.
Each array spanned ~4-6 mm
of anterior-posterior distance,
with ~1-2 mm of separation at
the closest point. We refer to
the two arrays as the ‘PMd
array’ and the ‘M1 array’,
though it should be kept in
mind that border between these
two areas is not sharp. Shown
are the J-9-18-2009 and N-9-
23-2010 datasets employed in
the main text, plus two
additional datasets collected on
different dates: J-11-06-2009
and N-9-10-2010. The
additional datasets employed
the same design as those
shown in the main text, and
were added to give a sense of
the consistency of the effects
described below.

Both PMd and M1
exhibited clear rotations of the
neural state. However, there
were two subtle but noticeable
differences between the
projections for the PMd and
M1 arrays. First, for PMd the
preparatory state tended to be
better separated across
conditions. This is consistent
with the long-reported fact that
PMd tends to exhibit stronger
preparatory activity. Second,
the angular velocity of the
rotations was in each case
slightly higher for M1. We
suspect that this effect may be
real. It is consistent with our
informal observations, notable
in every dataset we have

inspected so far, that neurons recorded in posterior sites are more likely to exhibit high-frequency response features.
Still, we wish to stress that PMd-like neurons are frequently found in M1 and vice versa. And of course both arrays
exhibited overall patterns that were qualitatively very similar: the neural state rotated away from the initial
preparatory state, with a direction and angular velocity that was reasonably consistent across all 108 reach
conditions.

Variance captured refers to the proportion of total data variance that lies within the jPCA plane. This was
typically 20-35%. Capturing more than this using two dimensions is unlikely, given the high-dimensional nature of
the neural data.

pr
oj

ec
tio

n
on

to
 jP

C
2

29% of var captured 29% of var captured

pr
oj

ec
tio

n
on

to
 jP

C
2

32% of var captured 28% of var captured

pr
oj

ec
tio

n
on

to
 jP

C
2

25% of var captured

24% of var captured

projection onto jPC1

pr
oj

ec
tio

n
on

to
 jP

C
2

26% of var captured

22% of var captured

(9-10-2010)

(11-06-2009)

Monkey N-array

(9-18-2009)

PMd

ce
ntr

al
su

lcu
s

arcuate spur

precentral
dimple

ce
nt

ra
l s

ul
cu

s

arcuate spur

precentral
dimple

Monkey J-array

(9-23-2010)

PMd M1

PMd M1

M1

projection onto jPC1

PMd M1

PMd M1

PMd M1

Supplementary figure 6. Effect of down-sampling the population of recorded neurons to the same size as the
population of recorded muscles. As reported in the main text (fig. 4f,j and fig. 6a,b) the recorded populations of
muscles did not exhibit strong rotations in the jPCA plane. A potential concern is that the population of muscle
recordings might have shown weak rotations (relative to the neural population) simply because fewer muscles were
recorded than neurons. Across datasets, 6-12 muscles were recorded, compared with 50-218 neural isolations.

Before describing the control shown here, two points are worth making. First, for all analyses in the main text,
the dimensionality of both the muscle and neural populations was reduced to six before applying jPCA. Thus, for
both muscles and neurons, the jPCA method attempts to find a plane with rotations within a six-dimensional space.
Specifically, it was not the case that jPCA was allowed to ‘search’ within a larger space for the neural data. Second,
the central hypothesis of this study holds that the output of cortex reflects a subset of the patterns present in the
neural data. This is consistent with the finding that muscle activity is typically found to be low dimensional43,44.
Thus, it should in some sense be true that the muscle population shows weaker rotations because it is lower
dimensional. This is certainly true of the generator model, where the single output is constructed from underlying
rotations, but does not itself contain any rotations (main text; fig. 5). Nevertheless, it is important to rule out the
statistical concern that the higher-dimensional neural space is somehow given an ‘unfair’ advantage.

To control for this possibility, for each dataset we down-sampled the neural population to equal the size of the
muscle population. This was repeated 100 times for each dataset. Individual-neuron recordings are often much
noisier than individual EMG recordings; we therefore restricted analysis to neurons where the strength of peri-
movement activity was better than average. The down-sampled data was then analyzed as in fig. 6 of the main text.
The distribution for the down-sampled data is broader and shifted slightly to the left of the distribution for the
original data. This is expected: the increase in sampling error will broaden the distribution. Furthermore, rotations
will be weakened on those draws where the sample of neurons does not contain both relevant phases to roughly
equal degrees. Nevertheless, the distribution for the down-sampled neural data peaks well to the right of the
distribution for the muscle recordings.

In summary, populations of neurons contain considerably stronger rotations of their state than do populations of
muscles, even when the two populations are matched in size.

neural
(original)

EMG

0

5

fre
qu

en
cy

 (%
 p

er
 b

in
) neural

(down-
sampled)

angle (e) between and
0 //2 /

Supplementary figure 7. Fits of the generator model (right) to deltoid EMG (left). Fits are the same as those in
figure 5b,c of the main text, but are shown for all 27 conditions (dataset J3). Color-coding is based on the initial
strength of deltoid EMG, just before movement onset.

fit to
EMG

move onset 200 ms

EMG
(deltoid,

monkey J3)

data generator model

move onset 200 ms

Supplementary figure 8. Further examples (from dataset J2) of how the generator model fits EMG (top). Also
shown are example responses of both real (left column) and simulated units from the generator model (right
column). Note that although the real and simulated data share a number of interesting general features, the
individual units/neurons are not meant to (and do not) map directly onto one another. Vertical scale bars indicate 20
spikes/s. So that the same color coding can be!used for all panels, color-coding is based on the initial strength of
deltoid EMG, just before movement onset. Note that for the model, neural responses directly reflect the underlying
rotational patterns used to generate EMG. Nevertheless the responses of most model neurons do not match the
EMG profile.

model
fit to
EMG

move onset 200 ms move onset 200 ms

EMG
(deltoid,

monkey J3)

target move onset

cell 140

cell 137

cell 135

cell 122

model unit 1

model unit 2

model unit 3

model unit 4

200 ms target move onset 200 ms

data generator model

 Supplementary figure 9. Example
data for individual conditions,
allowing one to compare kinematics,
EMG, jPCA projections of neural data,
and jPCA projections of generator
model ‘data’ (monkey J3 dataset). The
goal is not to make direct quantitative
comparisons, but to inform intuition
regarding how oscillatory patterns are
expected to change across conditions.
Data are from monkey J3. Each panel
(a-e) plots data for one condition.
Shown are hand trajectory (black, top),
reach speed (black), deltoid EMG
(red), EMG fit produced by the
generator model (dashed red),
projections onto the jPCs versus time
for real (blue) and generator model
data (dashed blue), and the jPCA
plane for the neural data (black,
bottom; jPC1 and jPC2 are the
horizontal and vertical axes). The
jPCA projections for the generator
model have been advanced in time by
50 ms to emulate a lag between neural
and EMG signals.

A comparison of kinematics, EMG,
and neural data makes two points.
First, there is no straightforward
relationship between reach duration
and oscillation duration. For example,
compare panel d with panel a.
Although reach durations differ, the
multiphasic muscle and neural patterns
have a similar duration in both panels.
Second, there is no obvious
relationship between reach duration
and oscillation frequency. These two
observations were true by design for
the generator model, but were not
guaranteed to be true for the neural
data or for the EMG.

Comparing EMG with the
generator model illustrates why the
generator model is able to provide

such good fits. The EMG contains multiphasic features that differ, across conditions, in their amplitude and phase.
Yet those multiphasic features are reasonably consistent in their frequency. The generator model is thus able to
contribute those features using a short-lived oscillatory pattern whose phase and amplitude differs across conditions.
The lower-frequency features are contributed by the second (and slower) of the two oscillations provided by the
model (not shown).

These data are inadequate to address the possibility that neural activity directly drives muscle activity. Indeed,
one presumes that reasonably strong dynamics are contributed by the spinal cord. Yet the examples shown illustrate
that there is nothing paradoxical regarding some of the salient features of the neural state-space rotations. Such
rotations have a relationship with kinematics that is sometimes counter-intuitive, but they form a natural basis for
driving the muscle activity that results in those kinematics.

a b
condition 3 condition 11

condition 15 condition 19 condition 23
c d e

EMG

Reach speed

fit to EMG

jPCA projections
(neural population)

jPCA projections
(simulated population)

200 ms

jPC1

jPC2

jPCA projection
(neural population)

Reach trajectory

Supplementary figure 10. Effect of
the pre-processing step where the
PSTH of each neuron was smoothed
using the ‘PC smoothing’ method45.
This step acts only to remove small
amounts of noise from the PSTHs of
individual neurons. PC smoothing
is done at a single-neuron level and
has no relationship to the use of
PCA or jPCA at the population
level.

Top panels: response of one
neuron (B16). The data in the left
column were smoothed using a 20
ms Gaussian kernel in the traditional
fashion. The data in the right
column were further smoothed using
the PC smoothing method.

Bottom panels: jPCA projections
of the population for unsmoothed
and smoothed data. The right panel
is identical to that in fig. 3 of the
main text. PC smoothing has almost
no impact at the population level,
for reasons described below.

PC smoothing was used to pre-
process all data presented in the
main text. The details of this
method are provided below. There

are two key high-level points. First, PC smoothing reduces the noise present in the PSTH of a given neuron. This
provides a better visual estimate of that neuron’s response. Second, PC smoothing has essentially no impact on the
jPCA projections. The removal of small amounts of individual-neuron noise is largely irrelevant at the population
level. The jPCA projections are thus virtually identical regardless of whether smoothing was applied. This was true
of all datasets, including the EMG recordings.

Although it PC smoothing had essentially no impact on the central results, for completeness we describe below
the motivation and methodology. First note that a temporal filter exploits the fact that different times cannot be
arbitrarily different from one another. In contrast, PC smoothing exploits the fact that different conditions cannot be
arbitrarily different from one another. PC smoothing exploits this fact by using PCA at the level of an individual
neuron (note that this is very different from the more usual approach of using PCA at the population level). To
apply PC smoothing, we compiled a cxt data matrix, where each row contained the response of that neuron for one
condition across all times. We then decomposed this matrix into its principal components (PCs), and reconstructed
the data using the first six principal components. This procedure preferentially discards small high-frequency events
that are unique to one of the 27 conditions (and thus likely to result from sampling error). Something similar could
of course be obtained by using a broader temporal filter, but that could come at the cost of losing real high-
frequency aspects of the response. An advantage of PC smoothing is that it does not remove high-frequency aspects
of the response if they are shared among a number of conditions.

To reiterate a technical point: this use of PCA to smooth individual-neuron PSTHs contrasts with the more
typical use of PCA at the population level. In the current study we use PCA twice: once for PC smoothing as
described above (a minor component of the overall analysis) and a second time at the population level during the
computation of the jPCA plane (a key component of our analyses).

projection onto jPC1 (a.u.)

pr
oj

ec
tio

n
on

to
 jP

C
2 (a

.u
.)

32% of var captured

Smoothed with a standard
Gaussian filter only

projection onto jPC1 (a.u.)

34% of var captured

Gaussian filter +
PC smoothing

target move onsettarget move onset 200 ms 200 ms

Supplementary figure 11. Effects of the
pre-processing step where each neuron’s
response was centered by removing the cross-
condition mean. The goal of this pre-
processing step was to focus all further
analyses on dimensions where activity differed
strongly across conditions. The panels below
show how the cross-condition mean was
removed (top row), the consequences of not
subtracting the cross-condition mean (middle
row), and possible relationships between the
cross-condition mean and the rotational
patterns (bottom row). a. Firing rate as a
function of time for one example neuron
(monkey J-array dataset; 108 conditions).
Each green/red trace plots the average firing
rate for one condition, shaded based on the
level of preparatory activity. The yellow trace
plots the cross-condition mean (the mean of all
the other traces). Before subsequent analysis
(the application of PCA and jPCA) this cross-
condition mean was subtracted. This was done
independently for each neuron. b. Response of
the same example neuron after mean
subtraction. The cross-condition mean
(yellow) is now zero at all times. c.
Application of jPCA to the monkey J-array
dataset, with no subtraction of the cross-
condition mean (i.e., the pre-processing step in
a,b was not applied). This panel can be
contrasted with that in figure 3d of the main
text (for which the cross-condition mean was
subtracted). When the cross-condition mean is
not subtracted, the projection onto the first
jPCA plane captures response patterns that
vary only weakly across conditions. This is

not surprising: many neurons display strong response features that are similar across conditions (the well-known
‘non-directional’ component of the response46). Thus, the top PCs (via standard PCA) often contain large features
that are very similar across conditions. The jPCs are simply a projection of what is already contained in the PCs. It
was therefore common (as in this example) for the first jPCA plane to contain patterns that were largely condition-
independent. Such patterns are consistent with our general hypothesis (they still involve rotations) but are difficult
to interpret because there are many potentially trivial explanations for the observation of curved trajectories that are
similar across all conditions. d. The second jPCA plane (jPC4 versus jPC3) for the same analysis as in c (again, the
cross-condition mean was not removed). This pattern is similar to that seen in the original analysis in figure 3d (and
exists in a plane orthogonal to that in panel c of this figure). Thus, for this dataset, the first jPCA plane largely
captures the condition-independent response, and the second plane largely captures the condition-dependent
response, and is thus very similar to that in the original analysis. However, across the 8 datasets it was not
uncommon for both planes to capture a mixture of condition-independent and condition-dependent components.
Thus, to allow the first jPC plane to always be the primary focus of analysis, and to allow that plane to capture
structure across conditions, all jPCA analyses in the main text were performed after subtracting the cross-condition
mean. e, f. Schematic illustration of possible trajectories for the condition-independent aspect of the response (the
cross-condition mean) relative to the pattern of rotations. Those two aspects might be orthogonal (as in e) or might
lie within the same plane (as in f). In both cases, rotations will be best isolated if the cross-condition mean is first
removed. These schematics also illustrate a possible role for the condition-independent component of the response.

(As a technical point, the analyses in this figure consider the top 10 PCs, to allow sufficient dimensions to
capture both condition-independent and condition-dependent features of the response).

monkey J-Array: jPCA plane 1
(cross-condition mean included)

projection onto jPC1 (a.u.)

pr
oj

ec
tio

n
on

to
 jP

C
2 (a

.u
.)

monkey J-Array: jPCA plane 2
(cross-condition mean included)

projection onto jPC3 (a.u.)

pr
oj

ec
tio

n
on

to
 jP

C
4 (a

.u
.)

c

e f
PC2

PC1

PC3

jPC2
jPC 1

jPC2

jPC1

cross-condition
mean

cross-condition
mean

target go move
onset target go move

onset

a b
Neuron 157

monkey J-Array

d

Supplementary Derivation

jPCA is a dynamical variant of PCA that finds planes of significant rotational structure within data. We
consider high dimensional time series data

x(t) = [x1(t), ..., xn(t)]. We can represent this data as a
matrix X 2 IRct⇥n, where ct is the number of time points in the time series across all conditions, and n
is the dimensionality of the data at any time point. This is as in the main text/methods, except here it is
convenient to orient X as ct⇥ n rather than n⇥ ct. Also note that, in practice, jPCA was always
applied after traditional PCA to Xred 2 IRct⇥k for k = 6 or similar. For the purposes of understanding
jPCA at a mathematical level, that preprocessing is a distraction (and has no bearing on the validity of the
algorithm itself), so we ignore it here. Hence, hereafter we consider data of the form X 2 IRct⇥n.

Traditional PCA begins by calculating the data covariance ⌃ = XTX (assuming X is mean-centered).
However, since we are particularly interested in dynamical structure, we seek a different n⇥ n matrix
summarizing the data. The simplest dynamical system that we can fit to that data is a time-invariant
linear dynamical system, which has the form

ẋ(t) = x(t)M for any matrix M 2 IRn⇥n. Solving for
such an M , given our data X, reduces to a simple least squares problem. We can write Ẋ = XM,
and then the least squares solution solves the problem M⇤ = argminM2IRn⇥n ||Ẋ �XM ||F (where
the subscript F denotes the Frobenius norm). This is solved in simple closed form as
M⇤ = (XTX)�1XT Ẋ (often written as M⇤ = X\Ẋ). Importantly, this dynamics matrix M⇤ is a
valid summary matrix: whereas the data covariance ⌃ = XTX describes the ellipsoid that best fits the
data (without regard to temporal information), M⇤ describes the linear dynamical system that best fits the
data X .

General linear dynamical systems describe both expansions/contractions and rotations, but they make no
distinction between these aspects of the data. In this work we seek to investigate the role that rotations
play in the dynamics of motor cortical neurons, and hence we are specifically interested in rotational
linear dynamical systems. Every linear transformation M is some mixture of a symmetric matrix and a
skew-symmetric matrix, which we write M = Msymm +Mskew. The symmetric part is, by analogy to
functions, the “even” part of the matrix, and is defined as Msymm = (M +MT)/2. Such matrices satisfy
Msymm = MT

symm. Accordingly, the skew-symmetric matrix (odd part of the matrix, also called anti-

symmetric) is Mskew = (M �MT)/2. Such matrices satisfy Mskew = �MT
skew. Adding Msymm and

Mskew returns the matrix M, so indeed these are a general description of any square matrix M.
Additionally, the symmetric component Msymm has purely real eigenvalues and thus describes only
expansions and contractions of data. So too, the skew-symmetric component has purely imaginary
eigenvalues (in complex conjugate pairs) and describes rotations in the data.

Since we are interested only in rotational linear dynamical systems, we must solve the original least
squares problem (Ẋ = XM) not over all matrices M (that describe any linear dynamical system), but
instead we should solve the original problem constrained only to the set of rotational linear systems. We
call this set of skew-symmetric matrices /Sn⇥n, and we are interested in solutions to the original least

squares problem of the form Mskew 2 /Sn⇥n, namely M⇤ = argminM2/Sn⇥n ||Ẋ �XM ||F.

To solve this constrained optimization, we use an equivalent but slightly more cumbersome notation. We
begin by noting that in the original unconstrained least squares solution X\Ẋ, the columns of M are

solved independently of each other. If we write M⇤ = X\Ẋ in the expanded least squares form

M⇤ = (XTX)�1XT Ẋ, we see that each column of Ẋ determines the corresponding column of M
independently of other columns. Thus, we can rewrite the original problem as a vector problem instead of
a matrix problem. We introduce the vector m 2 IRn2

, which is simply the matrix M 2 IRn⇥n unrolled
to a vector (we denote this using the common notation m = M(:)). We can then rewrite the

unconstrained least squares problem as m
⇤ = argminm2IRn2 ||ẋ� X̃m||2, where

ẋ = Ẋ(:), and X̃
is a block diagonal matrix with the matrix X repeated on the n diagonal blocks. These two forms of the
least squares problem give identical solutions (it is just a formatting choice: do we write the solution as a
vector m or a matrix M).

Now we rewrite the rotational optimization problem in this vector notation, as that will allow us to naturally
incorporate the constraint that M⇤ be a member of /Sn⇥n. Whereas previously we sought to solve the

unconstrained M⇤ = argminM2IRn⇥n ||Ẋ �XM ||F , here we want to solve the constrained

M⇤ = argminM2/Sn⇥n ||Ẋ �XM ||F . For this set of skew-symmetric matrices /Sn⇥n, by virtue of the

constraint Mskew = �MT
skew, these matrices only have n(n� 1)/2 free parameters (not the n2 of

general matrices IRn⇥n).

The key step is to note that we can represent skew-symmetric matrices as a vector of n(n� 1)/2 free
parameters: we call these vectors k 2 IRn(n�1)/2. Further, we can specify a linear map from these vectors
onto the space of our vectors m 2 IRn⇥n. This matrix, which we call H , simply places each of the
elements of k into two indices in m. We can consider k to be the lower triangle of a skew-symmetric
matrix. Suppose we have an element of k, kr, that corresponds to the (i, j) element of the matrix for
i > j (the lower triangle). H then takes this element kr and places: (1) the element kr in the element of
m corresponding to the (i, j) index of a matrix M, and (2) the negated element �kr in the element of m
corresponding to the (j, i) index of M. By this construction we define a matrix H that maps from

IRn(n�1)/2 (the number of free parameters in a skew-symmetric matrix) to IRn2

.

Finally, we return to our problem of interest. Since, by our construction, the quantity Hk is a vector in
IRn2

 and is equivalent to the set of all skew-symmetric matrices /Sn⇥n, our original problem has the
equivalence:

M⇤ = argminM2/Sn⇥n ||Ẋ�XM ||F () k

⇤ = argmin
k2IR

1
2n(n�1) ||ẋ�X̃Hk||2.

This form can then simply be solved in closed form by grouping H with X̃ and solving
k

⇤ = (X̃H)\ẋ.
Since k⇤ is a vector of length n(n� 1)/2 that defines a skew-symmetric matrix M⇤

skew (via H), and since
skew-symmetric matrices describe rotational dynamics, this solution is the matrix defining the best-fitting
rotational linear dynamical system.

As an implementation note, one might prefer to write the Lagrangian for the constrained optimization
problem. Doing so will result in, depending on programming choices, a very similar implementation as
above. In any event, this optimization problem has a unique global optimum, so any valid derivation will
produce exactly the same result. As a second note, representing the large matrices H and X̃ can be
computationally burdensome. Instead, we can avoid the explicit creation of these matrices by solving
k

⇤ = (X̃H)\ẋ with a gradient based-method, which allows us to manipulate vectors and matrices in the
most computationally convenient way. The result is an extremely fast and accurate method for solving

the skew-symmetric least squares problem (only slightly slower than regular unconstrained least
squares).

We now have successfully calculated M⇤
skew, the summary matrix that describes rotational dynamics in

the data. Traditional PCA takes the summary matrix (data covariance) and does an eigenvalue
decomposition, which creates a ranked set of orthonormal vectors that we can use to project our data.
Decomposition of a skew-symmetric matrix also produces a ranked set of orthonormal vectors. The
eigenvectors produced by the decomposition of Mskew come in orthogonal, complex conjugate pairs
(these vectors form a unitary matrix), and thus we can naturally think of the decomposition of Mskew as
producing orthogonal planes (the eigenvalues are purely imaginary). To find a plane - any pair of real-
valued projection vectors {ui,1,ui,2} - each complex conjugate pair of vectors {vi,1,vi,2} is combined
as ui,1 = vi,1 + vi,2 and ui,2 = j(vi,1 � vi,2), which are then suitably normalized. These u vectors
can be used exactly as in traditional PCA to project the high dimensional data to lower dimensionality
(e.g., by projecting onto just the first plane, after ordering from largest to smallest pair of imaginary
eigenvalues).

The magnitude of the eigenvalues allow us to select the plane (or planes) with the highest frequency and
consistency in the rotational linear dynamical system. Thus, projecting the data down onto these planes
allows us to visualize planes in the data with significant rotations. By connection to the imaginary
eigenvalues of Mskew, we call this algorithm jPCA. To be concrete, all figures showing projections
(except those noted otherwise) show the top jPC plane, which is the plane of strongest activity within the
rotational dynamical system that best fits the data.

It is important to revisit the fact that jPCA and PCA solve different objective functions and thus produce
different results: while PCA finds directions of maximal variance, jPCA finds directions (planes) of
significant rotational dynamics. Indeed, the plane with the strongest rotations could in principle capture
very little data variance. Thus, to prevent finding significant rotations that capture little variance, jPCA
was always applied after first using PCA to find the handful of dimensions (k = 6 typically) with the most
variance. In this application, jPCA simply rotates the dimensions found by PCA to better reveal dynamical
structure (see supplementary movie 2).

As a final note, the jPCA algorithm can be readily modified to a symmetric version ‘symmPCA’ to focus on
directions of largest expansion and contraction. The convenience of being able to eigendecompose a
summary matrix and yield orthogonal vectors belongs to the class of normal matrices, which by definition
are diagonalizable by a unitary matrix. The class of normal matrices includes symmetric and skew-
symmetric matrices, among others. This fact suggests a broader class of PCA variants that are a subject
of future work.

Supplementary Movies

Supplementary movie 1. Neural trajectory in the walking monkey (2× real time). The movie begins with the
monkey stationary. After ~8 seconds (16 seconds of real time), the monkey begins walking. After ~25 cycles, the
monkey pauses, then begins walking again. The monkey ceases walking once more just before the movie ends.
Clear rotations are seen only during epochs of walking (QuickTime 376 KB).

Supplementary movie 2. Illustration of how the PCA axes were rotated to find the jPCA projection. The movie
contains clips for three datasets: monkey B, monkey J-array, and monkey N-array. For each clip the opening frame
plots the PCA-based projection (PC2 versus PC1). On each subsequent frame the projection is rotated until the jPCA
projection is reached. Compare with figure 3a,e,f of the main text (QuickTime 3.1 MB).

Supplementary movie 3. The jPCA projections as a function of time. The movie contains clips for four datasets:
monkey B, monkey J3, monkey N, and monkey N-array. Time is 1/8th real time and starts just as preparatory
activity is giving way to movement-epoch activity. The projections differ slightly from those in figure 3 of the main
text for two reasons. First, they are based on more time. Second, to allow jPCA to best isolate the plane that
worked well across a broad range of times, analysis was based on the top 10 PCs. (The true dimensionality of the
data is higher still, but we wished to remain modestly conservative). The shuffled controls in supplementary movie
3, and the analysis of EMG in supplementary movie 4 similarly employ the greater range of times and projections
based on the top 10 PCs (QuickTime 2.4 MB).

Supplementary movie 4. Just as for supplementary movie 3 but after applying the shuffle control. The movie
contains clips for the same four datasets: monkey B, monkey J3, monkey N, and monkey N-array. The shuffle that
was applied was version #1 (see supplementary figure 2 and 3). (QuickTime 1.8 MB).

Supplementary movie 5. The jPCA projections as a function of time for populations of muscle recordings. The
movie contains clips for three datasets: monkey A, monkey J3, and monkey N. (EMG data were not recorded for
the full 108-condition task used for the array-based datasets). (QuickTime 1.2 MB)

Supplementary References

43 Bizzi, E., Cheung, V. C., d'Avella, A., Saltiel, P. & Tresch, M. Combining modules for movement. Brain Res

Rev 57, 125-133 (2008).
44 Tresch, M. C. & Jarc, A. The case for and against muscle synergies. Curr Opin Neurobiol 19, 601-607

(2009).
45 Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. & Shenoy, K. V. Cortical Preparatory

Activity: Representation of Movement or First Cog in a Dynamical Machine? Neuron 68, 387-400 (2010).
46 Moran, D. W. & Schwartz, A. B. Motor cortical representation of speed and direction during reaching. J

Neurophysiol 82, 2676-2692 (1999).

